

Housekeeping |

F %

L

 Reminder: Diagnostic is on Monday

— Covers material through this Wednesday
— Should know about functions and parameters
— Images (today’s class) won’t be on the diagnostic

— This is really just a chance to gauge for yourself how solid
you are on the material so far

* Image reference handout available on website

Learning Goals

1. Understanding how images are represented
2. Learning about the SimpleImage library
3. Writing code that can manipulate images

Images

What is an Image?

VAR i

* Image made of square pixels
— Example: flower.png AN
* Each pixel has x and y coordinates in te"‘mage
— The origin (0, 0) is at the upper-left corner
— vy increases going down, x increases going right

* Each pixel has single color encoded as 3 RGB values
— R=red; G = green; B = blue (O O) X

— Each value represents brightness for >
that color (red, green, or blue)

— R, G, B values each range from O to 255
— Can set RGB values to make any color!

Pixels in an Image Close-Up

image

\

s Ww NN = O

x
0 1 2 3 4

Pixel (1, 0)
red: 6 green:250 blue:7
(1.e. shade of green)

Pixel (4, 2)
red:241 green:252 blue:23

Pixel (2, 3):
red:247 green:250 blue:237

Working with Images:
Pillow and the
SimpleImage library

Installing Pillow

* Pillow is a version of the Python Imaging Library (PIL)
— Nick Parlante built Simplelmage library using Pillow
— You'll be using Simplelmage in Code in Place

* If you're using Ed, you’re all set — nothing you need to do!
— Simplelmage and Pillow libraries are already installed

* If you’re using PyCharm, you’ll need to install Pillow:

— Open PyCharm Terminal tab and type one of the following commands
(note the capital P in Pillow):

— On aPC: py -m pip install Pillow
— On a Mac: python3 -m pip install Pillow
— Will see something like:

«.bunch of stuff...
Successfully installed Pillow-7.1.1

* Image Reference Guide contains more information

Using Simplelmage Library

* To use the Simplelmage library in your code, include at
the top of your program file:

from simpleimage import SimpleImage

* This is importing the Simplelmage module, so that it is
accessible in the code you write

— Similar to when you used import random to use random
number generator library

Functions in Simplelmage Library

* Create a Simplelmage object by reading an image from
file (jpg, png, gif, etc.) and store it in a variable.
— Note: each Simplelmage object is made up of Pixel objects
my image = SimpleImage(filename)

Show the image on your computer.
my image.show()

* We can manipulate an image by changing its pixels
* We can also create new images and set its pixels

Accessing Pixels in an Image

We can use a new kind of loop called a "for-each" loop

Recall basic for loop (using range):
for 1 1in range(num):
1 will go from 0 to num - 1
do something()

For-each loop:

for item in collection :
Do something with item

For-each loop with image:
image = SimpleImage ("flower. jpg")
for pixel in image:
Do something with pixel

For-Each Loop Over Pixels

image = SimpleImage ("flower.jpg")
for pixel in image: _
Body of loop :l— This code gets

Do something with pixel repea?ﬂjQHFEfOr
each pixel in image

* Like variable i in for loop using range (),
pixel is a variable that gets updated with
each loop iteration.

« pixel gets assigned to each pixel object in
the image in turn.

Properties of Images and Pixels

* Each Simplelmage image has properties you can access:
— Can get the width and height of image (values are in pixels)
image.width, image.height

* Each pixel in an image also has properties:
— Can get x, y coordinates of a pixel in an image
pixel.x ,pixel.y

— Can get RGB values of a pixel
pixel.red, pixel.green, pixel.blue
* These are just integers between 0 and 255
* Higher R, G, or B values means more of that color in pixel
— Pixels are mutable objects!
— Can set pixel RGB values in an image to change it!

Example: A Darker Image

def darker(image):

Makes image passed in darker by halving red, green, blue
values. Note: changes in image persist after function ends.
Demonstrate Looping over all the pixels of an image,
changing each pixel to be half its original intensity.
for pixel in image:

pixel.red = pixel.red // 2

pixel.green = pixel.green // 2

pixel.blue = pixel.blue // 2

def main():
flower = SimpleImage('flower.png')
darker(flower)

flower.show()

Image objects are mutable. If you change one in a function, the
changes persist after function ends.

Example: Get Red Channel

def red channel(filename):
Reads image from file specified by filename.
Changes the image as follows:
For every pixel, set green and blue values to ©
yielding the red channel.
Return the changed image.
image = SimpleImage(filename)
for pixel in image:
pixel.green = 0
pixel.blue = ©
return image

Example: Grayscale

def compute luminosity(red, green, blue):
Calculates the Luminosity of a pixel using NTSC formula
to weight red, green, and blue values appropriately.

min

return (0.299 * red) + (0.587 * green) + (0.114 * blue)

def grayscale(filename):
Reads image from file specified by filename.
Change the image to be grayscale using the NTSC
Luminosity formula and return 1it.
image = SimpleImage(filename)
for pixel in image:
luminosity = compute_ luminosity(pixel.red, pixel.green, pixel.blue)
pixel.red = luminosity
pixel.green = luminosity
pixel.blue = luminosity
return image

Let's take 1t out for a spin!
lmageexamples.py

Greenscreening

What is Greenscreening?

* Like the movies (and Zoom backgrounds)
— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

What is Greenscreening?

* Like the movies (and Zoom backgrounds)
— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6
def greenscreen(main_filename, back filename):

image = SimpleImage(main_filename)
back = SimpleImage(back filename)

What is Greenscreening?

* Like the movies (and Zoom backgrounds)

— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back filename):
image = SimpleImage(main_filename)
back = SimpleImage(back filename)
for pixel in image:

What is Greenscreening?

* Like the movies (and Zoom backgrounds)

— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back filename):
image = SimpleImage(main_filename)
back = SimpleImage(back filename)
for pixel in image:
average = (pixel.red + pixel.green + pixel.blue) // 3
See 1f this pixel 1s "sufficiently" green
if pixel.green >= average * INTENSITY_THRESHOLD:

What is Greenscreening?

* Like the movies (and Zoom backgrounds)

— Have original image with areas that are "sufficiently green."

— Replace "green" pixels with pixels from corresponding x, y locations
in another image

INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back filename):
image = SimpleImage(main_filename)
back = SimpleImage(back filename)
for pixel in image:
average = (pixel.red + pixel.green + pixel.blue) // 3
See 1f this pixel 1s "sufficiently" green
if pixel.green >= average * INTENSITY_THRESHOLD:
If so, overwrite pixel in original image with
corresponding pixel from the back image.
X = pixel.x
y = pixel.y

image.set _pixel(x, y, back.get pixel(x, y))
return image

Let's try 1it!
(But using red instead of green)

Mirroring an l1mage

Piech + Sahami, CS106A, Stanford University

Nested Loops

image SimpleImage(filename)
width image.width
height = image.height

for y in range(height):
for x in range(width):
pixel = image.get pixel(x, y)
do something with pixel

width: 100 height: 50

o 1 2 3 96 97 98 99

vy (height) 2

x (width)

Mirroring an Image

def mirror image(filename):
image = SimpleImage(filename)
width = image.width
height = image.height

Create new image to contain mirror reflection
mirror = SimpleImage.blank(width * 2, height)

for y in range(height):
for x in range(width):
pixel = image.get pixel(x, y)
mirror.set pixel(x, y, pixel)
mirror.set pixel((width * 2) - (x + 1), y, pixel)
return mirror

T wanna see it!

What's The Difference?

def darker (filename) :
img = SimpleImage (filename)
for y in range(img.height):
for x in range(img.width):

def darker (filename) :
img = SimpleImage (filename)

for px in img:

px.red = px.red // 2 px = img.get pixel(x, y)

px.green = px.green // 2 px.red = px.red // 2

px.blue = px.blue // 2 px.green = px.green // 2
return img px.blue = px.blue // 2

return img

Nothing!

We only want to use nested for loops if

we care about x and y.
(Needed that for mirroring image.)

Learning Goals

1. Understanding how images are represented
2. Learning about the SimpleImage library
3. Writing code that can manipulate images

Piech + Sahami, CS106A, Stanford University

Be Careful with
Image Manipulation!

' g"\‘VOHQPS A nJ
= 9\\)\\(\ O\\A/O\y.

Image and audio
manipulation can be
used to make others
appear to say or do
things they did not say
or do.

Mampulahng_Humans with Images

Even when the video or
image is not widely
believed to be true,
being forced to
publically deny a false
claim could itself be a

claims of my harm (Rini)

opponent, '

I did NOT steal

cookies from

little kids in
strollers.

Contrary to the

Thanks to Katie Creel
for this material

