
Piech + Sahami, CS106A, Stanford University

Images
Chris Piech and Mehran Sahami

Piech + Sahami, CS106A, Stanford University

Housekeeping I

• Reminder: Diagnostic is on Monday
– Covers material through this Wednesday
– Should know about functions and parameters
– Images (today’s class) won’t be on the diagnostic
– This is really just a chance to gauge for yourself how solid

you are on the material so far

• Image reference handout available on website

Piech + Sahami, CS106A, Stanford University

Learning Goals
1. Understanding how images are represented
2. Learning about the SimpleImage library
3. Writing code that can manipulate images

Piech + Sahami, CS106A, Stanford University

Images

Piech + Sahami, CS106A, Stanford University

What is an Image?

• Image made of square pixels
– Example: flower.png

• Each pixel has x and y coordinates in the image
– The origin (0, 0) is at the upper-left corner
– y increases going down, x increases going right

• Each pixel has single color encoded as 3 RGB values
– R = red; G = green; B = blue
– Each value represents brightness for

that color (red, green, or blue)
– R, G, B values each range from 0 to 255
– Can set RGB values to make any color! y

(0,0) x

Piech + Sahami, CS106A, Stanford University

Pixels in an Image Close-Up

Piech + Sahami, CS106A, Stanford University

Working with Images:
Pillow and the

SimpleImage library

Piech + Sahami, CS106A, Stanford University

Installing Pillow
• Pillow is a version of the Python Imaging Library (PIL)

– Nick Parlante built SimpleImage library using Pillow
– You'll be using SimpleImage in Code in Place

• If you’re using Ed, you’re all set – nothing you need to do!
– SimpleImage and Pillow libraries are already installed

• If you’re using PyCharm, you’ll need to install Pillow:
– Open PyCharm Terminal tab and type one of the following commands

(note the capital P in Pillow):
– On a PC: py -m pip install Pillow
– On a Mac: python3 -m pip install Pillow
– Will see something like:

...bunch of stuff...
Successfully installed Pillow-7.1.1

• Image Reference Guide contains more information

Piech + Sahami, CS106A, Stanford University

Using SimpleImage Library

• To use the SimpleImage library in your code, include at
the top of your program file:
from simpleimage import SimpleImage

• This is importing the SimpleImage module, so that it is
accessible in the code you write
– Similar to when you used import random to use random

number generator library

Piech + Sahami, CS106A, Stanford University

Functions in SimpleImage Library

• Create a SimpleImage object by reading an image from
file (jpg, png, gif, etc.) and store it in a variable.
– Note: each SimpleImage object is made up of Pixel objects

my_image = SimpleImage(filename)

• Show the image on your computer.
my_image.show()

• We can manipulate an image by changing its pixels
• We can also create new images and set its pixels

Piech + Sahami, CS106A, Stanford University

Accessing Pixels in an Image
• We can use a new kind of loop called a "for-each" loop
• Recall basic for loop (using range):

for i in range(num):
i will go from 0 to num - 1
do_something()

• For-each loop:
for item in collection:

Do something with item

• For-each loop with image:
image = SimpleImage("flower.jpg")
for pixel in image:

Do something with pixel

Piech + Sahami, CS106A, Stanford University

For-Each Loop Over Pixels

image = SimpleImage("flower.jpg")
for pixel in image:

Body of loop
Do something with pixel

• Like variable i in for loop using range(),
pixel is a variable that gets updated with
each loop iteration.

• pixel gets assigned to each pixel object in
the image in turn.

This code gets
repeated once for
each pixel in image

Piech + Sahami, CS106A, Stanford University

Properties of Images and Pixels
• Each SimpleImage image has properties you can access:
– Can get the width and height of image (values are in pixels)

image.width, image.height

• Each pixel in an image also has properties:
– Can get x, y coordinates of a pixel in an image

pixel.x , pixel.y
– Can get RGB values of a pixel

pixel.red, pixel.green, pixel.blue
• These are just integers between 0 and 255
• Higher R, G, or B values means more of that color in pixel

– Pixels are mutable objects!
– Can set pixel RGB values in an image to change it!

Piech + Sahami, CS106A, Stanford University

Example: A Darker Image

Image objects are mutable. If you change one in a function, the
changes persist after function ends.

def darker(image):
"""
Makes image passed in darker by halving red, green, blue
values. Note: changes in image persist after function ends.
"""
Demonstrate looping over all the pixels of an image,
changing each pixel to be half its original intensity.
for pixel in image:

pixel.red = pixel.red // 2
pixel.green = pixel.green // 2
pixel.blue = pixel.blue // 2

def main():
flower = SimpleImage('flower.png')
darker(flower)
flower.show()

Piech + Sahami, CS106A, Stanford University

Example: Get Red Channel

def red_channel(filename):
"""
Reads image from file specified by filename.
Changes the image as follows:
For every pixel, set green and blue values to 0
yielding the red channel.
Return the changed image.
"""
image = SimpleImage(filename)
for pixel in image:

pixel.green = 0
pixel.blue = 0

return image

Piech + Sahami, CS106A, Stanford University

Example: Grayscale
def compute_luminosity(red, green, blue):

"""
Calculates the luminosity of a pixel using NTSC formula
to weight red, green, and blue values appropriately.
"""
return (0.299 * red) + (0.587 * green) + (0.114 * blue)

def grayscale(filename):
"""
Reads image from file specified by filename.
Change the image to be grayscale using the NTSC
luminosity formula and return it.
"""
image = SimpleImage(filename)
for pixel in image:

luminosity = compute_luminosity(pixel.red, pixel.green, pixel.blue)
pixel.red = luminosity
pixel.green = luminosity
pixel.blue = luminosity

return image

Piech + Sahami, CS106A, Stanford University

Let's take it out for a spin!
imageexamples.py

Piech + Sahami, CS106A, Stanford University

Greenscreening

Piech + Sahami, CS106A, Stanford University

What is Greenscreening?
• Like the movies (and Zoom backgrounds)

– Have original image with areas that are "sufficiently green."
– Replace "green" pixels with pixels from corresponding x, y locations

in another image

Piech + Sahami, CS106A, Stanford University

What is Greenscreening?
• Like the movies (and Zoom backgrounds)

– Have original image with areas that are "sufficiently green."
– Replace "green" pixels with pixels from corresponding x, y locations

in another image
INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)

Piech + Sahami, CS106A, Stanford University

What is Greenscreening?
• Like the movies (and Zoom backgrounds)

– Have original image with areas that are "sufficiently green."
– Replace "green" pixels with pixels from corresponding x, y locations

in another image
INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:

Piech + Sahami, CS106A, Stanford University

What is Greenscreening?
• Like the movies (and Zoom backgrounds)

– Have original image with areas that are "sufficiently green."
– Replace "green" pixels with pixels from corresponding x, y locations

in another image
INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:

average = (pixel.red + pixel.green + pixel.blue) // 3
See if this pixel is "sufficiently" green
if pixel.green >= average * INTENSITY_THRESHOLD:

Piech + Sahami, CS106A, Stanford University

What is Greenscreening?
• Like the movies (and Zoom backgrounds)

– Have original image with areas that are "sufficiently green."
– Replace "green" pixels with pixels from corresponding x, y locations

in another image
INTENSITY_THRESHOLD = 1.6

def greenscreen(main_filename, back_filename):
image = SimpleImage(main_filename)
back = SimpleImage(back_filename)
for pixel in image:

average = (pixel.red + pixel.green + pixel.blue) // 3
See if this pixel is "sufficiently" green
if pixel.green >= average * INTENSITY_THRESHOLD:

If so, overwrite pixel in original image with
corresponding pixel from the back image.
x = pixel.x
y = pixel.y
image.set_pixel(x, y, back.get_pixel(x, y))

return image

Piech + Sahami, CS106A, Stanford University

Let's try it!
(But using red instead of green)

Piech + Sahami, CS106A, Stanford University

Mirroring an image

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Nested Loops
image = SimpleImage(filename)
width = image.width
height = image.height

for y in range(height):
for x in range(width):

pixel = image.get_pixel(x, y)
do something with pixel

x (width)y (height)

Piech + Sahami, CS106A, Stanford University

Mirroring an Image
def mirror_image(filename):

image = SimpleImage(filename)
width = image.width
height = image.height

Create new image to contain mirror reflection
mirror = SimpleImage.blank(width * 2, height)

for y in range(height):
for x in range(width):

pixel = image.get_pixel(x, y)
mirror.set_pixel(x, y, pixel)
mirror.set_pixel((width * 2) - (x + 1), y, pixel)

return mirror

Piech + Sahami, CS106A, Stanford University

I wanna see it!

Piech + Sahami, CS106A, Stanford University

What's The Difference?

def darker(filename):
img = SimpleImage(filename)
for y in range(img.height):

for x in range(img.width):
px = img.get_pixel(x, y)
px.red = px.red // 2
px.green = px.green // 2
px.blue = px.blue // 2

return img

def darker(filename):
img = SimpleImage(filename)
for px in img:

px.red = px.red // 2
px.green = px.green // 2
px.blue = px.blue // 2

return img

Nothing!
We only want to use nested for loops if

we care about x and y.
(Needed that for mirroring image.)

Piech + Sahami, CS106A, Stanford University

Learning Goals
1. Understanding how images are represented
2. Learning about the SimpleImage library
3. Writing code that can manipulate images

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Piech + Sahami, CS106A, Stanford University

Be Careful with
Image Manipulation!

Piech + Sahami, CS106A, Stanford University

Image and audio
manipulation can be
used to make others
appear to say or do
things they did not say
or do.

Manipulating Humans with Images

Piech + Sahami, CS106A, Stanford University

Even when the video or
image is not widely
believed to be true,
being forced to
publically deny a false
claim could itself be a
harm (Rini)

Thanks to Katie Creel
for this material

Manipulating Humans with Images

Contrary to the
claims of my
opponent,

I did NOT steal
cookies from
little kids in
strollers.

